A new double-chamber model of ion channels. Beyond the Hodgkin and Huxley model.

نویسنده

  • Krzysztof Dołowy
چکیده

This paper proposes a new double-chamber model (DCM) of ion channels. The model ion channel consists of a series of three pores alternating with two chambers. The chambers are net negatively charged. The chamber's electric charge originates from dissociated amino acid side chains and is pH dependent. The chamber's net negative charge is compensated by cations present inside the chamber and in a diffuse electric layer outside the chamber. The pore's permeability is constant independent of time. One pore of the sodium channel and one of the potassium channel is a voltage-sensing pore. Due to the channel's structure, ions flow through the pores and chambers in a time-dependent manner. The model reproduces experimental voltage clamp and action potential data. The current flowing through a single sodium channel is less then one femtoampere. The DCM is considerably simpler then the Hodgkin and Huxley model (HHM) used to describe the electrophysiological properties of an axon. Unlike the HHM, the DCM can explain refractoriness, anode break excitation, accommodation and the effect of pH and temperature on the channels without additional parameters. In the DCM, the axon membrane shows repetitive activity depending on the channel density, sodium to potassium channel ratio and external potassium concentration. In the DCM, the action potential starts from 'hot spot areas' of higher channel densities and a higher sodium to potassium channel ratio, and then propagates through the whole axon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new circuit model for the Parameters in equations of low power Hodgkin-Huxley neuron cell

In this paper, α and β parameters and gating variables equations of Hodgkin-Huxley neuron cell have been studied. Gating variables show opening and closing rate of ion flow of calcium and potassium in neuron cell. Variable functions α and β, are exponential functions in terms of u potential that have been obtained by Hodgkin and Huxley experimentally to adjust the equations of neural cells. In ...

متن کامل

Effects of ionic parameters on behavior of a skeletal muscle fiber model

All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...

متن کامل

Chapter 5: Modeling voltage-dependent channels

Many different types of voltage-dependent ion channels have been identified and are responsible for a rich repertoire of electrical behavior essential for neuronal function (Llinas, 1988). Modeling voltagedependent ion channels is crucial to assess their numerous roles in the genesis of the complex intrinsic properties of central neurons, as well as how such neurons integrate synaptic inputs wi...

متن کامل

A new reduced mathematical model to simulate the action potential in end plate of skeletal muscle fibers

Usually mathematicians use Hodgkin-Huxley model or FitzHug-Nagumo model to simulate action potentials of skeletal muscle fibers. These models are electrically excitable, but skeletal muscle fibers are stimulated chemically. To investigate skeletal muscle fibers we use a model with six ordinary differential equations. This dynamical system is sensitive to initial value of some variables so it is...

متن کامل

Minimizing the Hodgkin-Huxley Model

Memristor (memory resistor) is a passive electrical circuit element whose instantaneous resistance depends not only on the voltage, but the history of the current applied to it. The first memristor was fabricated in 2008 by the HP labs in a semiconductor titanium-dioxide thin film. Apart from its potential for high-density memory storage, the electrical properties of a memristor share similarit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular & molecular biology letters

دوره 8 3  شماره 

صفحات  -

تاریخ انتشار 2003